

MASENO SCHOOL

2025 MOCK EXAMINATION

Kenya Certificate of Secondary Education

233 / 2 - Chemistry Paper 2	
Tuesday 22 nd July, 2025	Unique Identifier No
8.00 a.m 10.00 a.m.	Signature

INSTRUCTIONS

- Write your unique identifier number in the space provided.
- Answer all questions in the spaces provided
- Mathematical tables and silent electronic calculators may be used for calculations.
- All workings must be clearly shown where necessary.
- Candidates should check the question paper to ascertain all the pages are printed as indicated and no questions are missing.

For Examiners Use Only

Questions	Maximum Score	Score
1	13	
2	12	
3	12	
4	10	
5	10	
6	12	
7	11	
TOTAL	80	

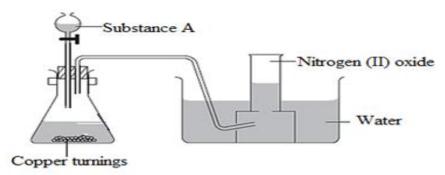
1. **Figure 1** shows part of the periodic table of elements. The letters are not the actual symbols of the elements.

						X
U					V	
	Z	G	S		W	
T	R					Y
Q						

(a)	Identify the element with the lowest first ionization energy.	(1 mark)
(b)	In terms of structure and bonding, explain the difference in the melting points of ele	
	\mathbf{W}	(2 marks)
<i>(</i>)		
(c)	Compare the ionic radii of element U and V. Give a reason for your answer.	(2 marks)
(d)	Identify an element whose oxide dissolves in both strong acids and strong alkalis.	(1 mark)
(e)	Explain why the melting point of U is higher than that of T.	(2 marks)
(f)	Given that element R consists of two isotopes ⁴⁰ R and ^y R. A sample of R was found	to consists
	of 90% of 40 R. If the relative atomic mass of R is 40.2. Work out the number of neutrons are sufficiently as the sum of the su	crons in ^y R.
		(2 marks)

(g) **Table 1** shows the chlorides of elements in period 3 of the periodic table with their melting and boiling points.

Chloride	NaCl	MgCl ₂	AlCl ₃	SiCl ₄	PCl ₅	SCl ₂
M.P (°C)	801	714	180	-70	-94	-78
B.P (°C)	1467	1437	-	57	-	59


	(1)	Select from the table 1 an acidic chloride and write the equation for its react	(1 mark)
	(:: <u>)</u>	W/	
	(11)	Water was added to the chloride of aluminium, the mixture was stirred well a	
		drops of methyl orange indicator were added to the solution. State and explain	
		observation that was made.	(2 marks)
• (-)	0		
2. (a)		mole of octane was made to undergo catalytic cracking to form two hydrocardas an alkene molecule with three carbon atoms.	oons P and Q.
			(1 morts)
	(i)	Write the formula of Q.	(1 mark)
	(ii)	Give the structural formula of P.	(1 mark)
			•••••
			•••••
	(iii)	Name the compound formed when P undergoes self-addition reaction.	(1 mark)
	(iv)	State one disadvantage of using the product named in (a) (iii) above.	(1 mark)
			•••••
	(v)	Incomplete combustion of hydrocarbon Q may result into air pollution. W	rite an
		equation to illustrate this.	(1 mark)
	(vi)	Cracking can also be achieved without using a catalyst. Give the condition	s under which
		the other type of cracking can be carried out.	(1 mark)

- (b) An organic compound J has the following percentage composition by mass; carbon = 54.55%, hydrogen = 9.09%, and the rest is oxygen. (C = 12.0, H = 1.0, O = 16.0)
 - (i) Determine the molecular formula of the compound given that the molecular mass of the compound is 88. (2 marks)

(ii) If the organic compound obtained has a pleasant fruity smell, **draw** and **name** the structure of the two isomers of the molecular formula obtained in (b) (i) above.

(2 marks)

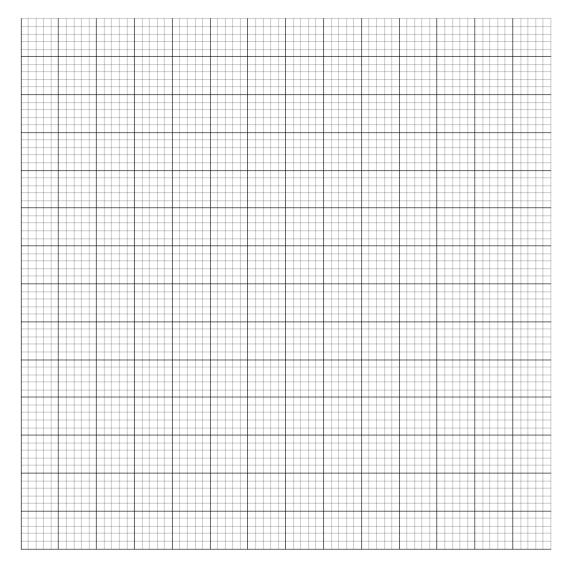
- 3. (a) Two reagents that can be used to prepare nitrogen (IV) oxide are copper turnings and concentrated nitric (V) acid.
 - (i) Write an equation for the reaction that takes place to produce nitrogen (II) oxide from the set up below. (1 mark)

(ii) Name substance A. (1 mark)

(iii) At the beginning of the experiment, some brown gas was observed in the flask but soon disappeared. Explain these observations. (2 marks)

(iv)	Desc	ribe one che	mical test for	the gas produce	ed in the se	et up above.	(2 marks)
	•••••						
(v)	Moto	or vehicle exl	naust systems	are fitted with	catalytic c	onverters to preve	nt the
	emiss	sion of harm	ful gases sucl	n as carbon (IV)	oxide and	l oxides of nitroge	n.
	I.	I. Write an equation to illustrate some of the reactions that take place					
		catalytic	converter.				(1 mark)
	II.	Complete	e combustion	of fuel in the in	ternal com	nbustion engines p	roduces
		carbon (I	V) oxide. Wh	nat effect does th	ne gas hav	e when its concent	ration in the
		atmosphe	ere exceeds th	e acceptable lev	vels?		(1 mark)
<i>a</i> > 4			0				
(b) Am	monia ga	s is used to n	nanufacture n	itric (V) acid, a	s shown be	elow;	
				Gases		Wa	ter
			_		_		
_	monia Air	High	A	Cooling	B	Absorption	<u>Air</u>
		Temperature Unit I)	chamber Unit II	J	Unit III	
						Nitrio (V) asid	
						Nitric (V) acid	
(i)	This	process requ	ires the use o	f a catalyst. Nar	me the cata	alyst used in this p	rocess? (1 mark)
							` ,
(**)	T1 /	······································		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
(ii)	ident	ify the comp	ouna B.				(1 mark)
/*** \							
(iii)				ammonia to nit	tric (V) aci	id is known as cata	
	oxida	ntion of amm	ionia.				(2 marks)
	•••••						
	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				
	•••••		• • • • • • • • • • • • • • • • • • • •				
	•••••						

/·\ === :		
(i) Write	the equation for the overall cell reaction.	(1 marl
•••••		•••••
(ii) Calcul	ate the electromotive force for the electrochemical cell.	(1 mark
(iii) Give:		
I.	the reducing agent	(½ mark
II.	the oxidizing agent	(½ mark
Metals V,	W and X displace copper from its compounds. Describe an experi	iment that can
	out to arrange the three metals in order of their reactivity with cop	
	sulphate and a thermometer.	(3 marks
· · · · · · /	r	(-
Both sodiu		
		and small scale uses
that can be	m hydroxide and chlorine are important chemicals for industrial a	and small scale uses
that can be	m hydroxide and chlorine are important chemicals for industrial a manufactured from electrolysis of concentrated sodium chloride	and small scale uses (Brine) uced in the mercury
that can be (i) Describ	m hydroxide and chlorine are important chemicals for industrial a manufactured from electrolysis of concentrated sodium chloride	and small scale uses
that can be (i) Describ	m hydroxide and chlorine are important chemicals for industrial a manufactured from electrolysis of concentrated sodium chloride	and small scale uses (Brine) uced in the mercury
that can be (i) Describ	m hydroxide and chlorine are important chemicals for industrial a manufactured from electrolysis of concentrated sodium chloride	and small scale uses (Brine) uced in the mercury


4. (a) Given the following standard electrode potentials

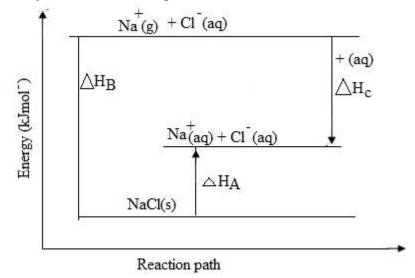
	•	_	ure. Briefly describe how pur	re sodium
h	ydroxide is obtained.			(1 mark)
5. (a) Ethan	ol can be manufactur	red from ethene and stean	n as shown in the equation bel	ow:
		CH ₃ CH ₂ O		
_	-	_	f equilibrium of the above reation.	ction. Name the (1 mark)
Other	ractor that will arrev	et the position of equilion	tuil of the above reaction.	(1 mark)
•••••		•••••		• • • • • • • • • • • • • • • • • • • •
(b) The (lata in the table was i	recorded when one mole o	of ethene was reacted with ex	cess steam. The
amo	unt of ethanol in the	equilibrium mixture was i	recorded under different cond	
temp	perature and pressure	. Use the data to answer the	he questions that follow.	
	T. (0.0)	5	Amount of ethanol at	7
	Temp (°C)	Pressure (atm	equilibrium (moles)	
	300	50	0.40	1
	300	60	0.46	1
	300	70	0.55	
	250	50	0.42	1
	350	50	0.38	1
				_
(i) S	State whether the rea	ction between ethene and	steam is exothermic or endot	_
				(3 marks)
(ii)	State and explain one	e advantage and one disad	lvantage of using extremely h	igh pressure in
	this reaction.	C		0 1
]	I. Advantage			(1 mark)
]	II. Disadvantage			(1 mark)
	•••••			

(c) In an experiment to determine the rate of reaction between calcium carbonate and dilute hydrochloric acid 2g of CaCO₃ were reacted with excess 2M hydrochloric acid. The volume of carbon (IV) oxide evolved was recorded at regular intervals of one minute for six minutes. The results are as shown in the table below.

Time (minutes)	1	2	3	4	5	6
Volume of CO ₂ (cm ³)	170	296	405	465	480	480

(i) Plot a graph of time in minutes on the horizontal axis against volume of carbon (IV) oxide on the vertical axis. (3 marks)

(ii) Determine the rate of reaction at 4 minutes

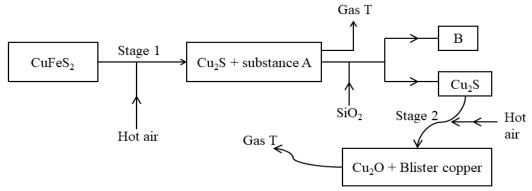

(2 marks)

(a) State Hess' law	(1 mark)
	•••••
(b) Use the following standard enthalpies of combustion of graphite, hydrogen and butane a	nd
answer the questions that follow.	
$C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} \Delta H_1 = -393 \text{ kJmol}^{-1}$	
$H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(l)} \Delta H_2 = -286 \text{ kJmol}^{-1}$	
$C_4H_{10(g)} + {}^{13}\!\!/_2O_{2(g)} \longrightarrow 4CO_{2(g)} + 5H_2O_{(l)} \Delta H = -2877 \text{ kJmol}^{-1}$	
(i) Draw an energy cycle diagram linking the heat of formation of butane with its heat of	of
combustion and heats of combustion of graphite and hydrogen. (2 ma	rks)
(ii) Calculate the standard heat of formation of butane. (2)	2 marks)
(iii) Propane and butane are constituents of cooking gas. Which one produces more ene	ergy per
mole on combustion? Explain your answer.	2 marks)
	•••••
(iv) Give a reason why the Kenyan government is replacing the use of wood and charc	oal in
high schools with Liquefied Petroleum Gas (LPG).	(1 mark)
	 (b) Use the following standard enthalpies of combustion of graphite, hydrogen and butane a answer the questions that follow. C(s) + O_{2(g)} → CO_{2(g)} ΔH₁ = -393 kJmol⁻¹ H_{2(g)} + ½O_{2(g)} → H₂O₍₁₎ ΔH₂ = -286 kJmol⁻¹ C₄H_{10(g)} + ½O_{2(g)} → 4CO_{2(g)} + 5H₂O₍₁₎ ΔH = -2877 kJmol⁻¹ (i) Draw an energy cycle diagram linking the heat of formation of butane with its heat of combustion and heats of combustion of graphite and hydrogen. (2 ma) (ii) Calculate the standard heat of formation of butane. (iii) Propane and butane are constituents of cooking gas. Which one produces more enemole on combustion? Explain your answer. (3) (iv) Give a reason why the Kenyan government is replacing the use of wood and charce.

(c) (i) What is meant by the term energy level diagram? (1 mark)

.....

(ii) The diagram below shows an energy level diagram for the formation of sodium chloride. Study it and answer the questions that follow.



I. State the energy changes represented by:

II. What is the relationship between
$$\Delta H_A$$
, ΔH_B and ΔH_C (½ mark)

III. Calculate
$$\Delta H_A$$
 given that $\Delta H_B = -776 \text{ kJmol}^{-1}$ and $\Delta H_B = -771 \text{kJmol}^{-1}$ (1 mark)

7. (a) The flow chart shows the process used to extract copper. Study it and answer the questions that follow.

i) Name:

1)	name;		/1 1 1 1
	1.	Gas T	(1 mark)
	II.	Substance A	(1 mark)
ii)	Write 6	equations for the reaction taking place at:	
	I.	Stage 1	(1 mark)
	II.	To form substance B	(1 mark)
iii)	State o	ne effect that the above process would have on the environment.	(1 mark)

(2 marks)

b) Draw a well labelled diagram to show how blister copper can be purified.

for 4 hours. Calculate the amount of the current passed if the mass of copper deposit cathode is 5kgs. $(Cu = 63.5, 1F = 96500 \text{ coulombs})$	•
Cambae is 3 kgs. (Cu = 00.0, 11 = >0000 comontos)	(5 marks)
d) Explain why copper can be extracted by electrolytic method from copper (II) sulp	hate
solution while magnesium cannot be extracted from the aqueous magnesium sulphat	e by the
same method.	(2 marks)
	· • • • • • • • • • • • • • • • • • • •